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Abstract

In graph theory, the Metric Dimension (MD) is an elementary metric that affords evidence
nearly the essential selves of graphs. We reconnoiter the MD in the venue of edge-contracted
regular graphs in this paper, with exceptional devotion to the Antiprism, Petersen, and Harary
graphs. Our effort creates a vital bond between antiprism and its edge-contracted counterpart:
we give a scheme to regulate the MD of the edge-contracted graph, given the MD of the novel
graph. We likewise inspect how edge contraction affects regular graphs’ MDs, providing in-
sight into how this operation deviations both the MD and the underlying graph topology. By
providing supportive means for the exploration and alteration of regular graphs in a variety of
real-world circumstances, our investigation elucidates these belongings and improves the field
of graph theory.
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1 Introduction

A Resolving Set (RS) is a subset of vertices in a graph G that exclusively governs the extent
between every duo of vertices. Any duo of vertices u and v in V has a vertex r in the RS ℜ with
an altered distance between v and r than u and r. The MD of a graph G is the cardinality of its
smallest RS, which is signified by the cipher dim(G). Identifying a RS or calculating a graph’s MD
are difficult computer problems that are frequently NP-hard [22]. Contingent on the grid’s inim-
itable potentials, abundant strategies, and heuristics have been anticipated to ascertain accurate
responses or imprecise them.

In graph theory, an Edge Contraction (EC) is the merger of dual vertices along an edge to
form an innovative graph with one less vertex. Many graph operations and procedures can ad-
vantage from EC. It can be used, for instance, in graph partitioning, network flow calculations,
graph simplification, and graph isomorphism te]sting algorithms. But it’s crucial to remember
that EC modifies the graph’s structure, possibly affecting its diameter, clustering coefficient, and
other structural elements.

The imperative task of pinpointing an intruder within a network, devoid of ambiguity, served
as the impetus for Slater’s conceptualization of the MD of a graph, as delineated in [18, 20]. Inde-
pendently, Harary and Melter delved into this concept in their own right, as documented in [11].
This cardinal property finds diverse applications across various domains, such as; resolvability
in graphs [7], and metric bases in digital geometry are discussed in [14]. Explorations into the
MD have extended beyond its theoretical roots to encompass analysis of graph operations and
structured outputs.

Notably, investigations have probed the MD of graph transformations such as the line graph
[9], and comarsion of MD with different families of graphs are computed [9]. The Cartesian
product of graphs [6] and their MD properties are discussed [16]. The product of corona graphs
[12] and theMD basis properties are computed [23]. The product of joint graphs [15], MD base,d
and local fractional based are developed [21]. The product of lexicographic graphs [17], and the
product of hierarchical graphs [8] are discussed in detail. The study of local fractional metric
dimension of rotationally symmetrical polygonal graphs [3].

TheMDs and their extensions for the generalized perimantanes diamondoid structure, demon-
strating how each parameter varies with the parameter n, or the number of copies, and is depen-
dent on the copies of the original or base perimantanes diamondoid structure has been study in
[5]. The classification of trees and unicyclic graphs with mixed dimension three, and further to
determine the specific requirements that must be met for a graph to havemixedMD 3 [4]. Alamer
et al. [2] established precise limits on the local fractional MD of several modified prism network
types. It is also demonstrated that the local fractional MD of these networks stays constrained as
their order approaches infinity.

The boundedness properties for local fractionalMD over an algebraic structure graph has been
studied in [1]. The modified symmetric division deg index is studied in [10]. Recent research on
the MD of carbon nanotube Y-junctions [19] and supramolecular networks has made a remark-
able contribution to the field. The primary findings of this study include MD of edge contracted
families of graphs; namely Antiprism, Petersen, and Harary graphs. In Section 2-4, we compute
the metric delusion of edge contracted Antiprism, edge contracted Petersen, and edge contracted
Harary graphs respectively. In the last section we add concluding remarks regarding outcomes of
the study.
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The motive behind this effort is fantastic. The MD of a graph gauges the graph’s endurance
to reliably recognize the precise positions of vertices via distances to a particular class of vertices
known as a RS. This notion has tangible uses in disciplines such as network navigation, combina-
torial optimization, and biology, where effectively utilized differentiation between distinct vertices
is critical. Considerate the MD relief scholars to ripen appliances for effectually tracing and mon-
itoring evidence intimate a building.

EC, a scheme that unifies dual vertices coupled by an edge into a single vertex while confis-
cating self-loops, amends the distances among vertices, hence prompting theMD. Inspecting how
MD develops throughout EC can give supplementary evidence on how essential interpretations
influence a graph’s resolving belongings. This is particularly expedient when large networks are
exemplified by simpler, contracted models, as it permits extrapolations about the resolving pro-
ficiencies of these simplified graphs. Families including Antiprism, Petersen, and Harary graphs
deliver inimitable sameness and regularity, making them supreme for reviewing the properties
of EC. For example: Antiprism graphs have a symmetrical, cyclic shape, which sorts distance fea-
tures simple to scrutinize and envisage. Discerning fluctuations in MD due to EC in these topolo-
gies delivers solid confirmation for appreciating how unvarying, cyclical graphs perform when
abridged.

Petersen Graphs are well-studied due to their unique non-trivial assets, such as being both
symmetric and non-planar, making them a perfect example for revising the intricacies of MD in
complex graph topologies. Harary graphs are known for their high connectivity, which elastici-
ties intuition into how contraction distresses distance metrics in heavily attached schemes. This
fashions a substance for smearing the verdicts to other high-connectivity networks. Understand-
ing MD fluctuations in contracted graphs is essential for large-scale networks where full network
perseverance is computationally lavish. For example, in telecommunications networks, contracted
models can reproduce large-scale networks while upholding crucial possessions for tracing and
directing. Biological and chemical structures: in molecular and protein structure studies, con-
tracted graph models are reduced approximations of complicated interaction networks, with MD
insights helping to pinpoint crucial sites or connections.

Robotic navigation and surveillance: edge contraction in simplified pathfinding graphs can
improve navigation by lowering complexity while keeping critical distance information. Studying
EC and its impact on MD within certain graph families not only improves our understanding of
these structures, but also contributes to larger theoretical insights into how MD operates across
different transformation types. This might lead to the development of generalizable patterns or
formulae for predicting MD outcomes across different graph alterations.

The novelty and originality of reviewingMD via EC for definite graph clans branch from influ-
ential how essential easy styles mark exceptional vertex identification, expressly in symmetrical or
vastly linked graphs, which delivers both hypothetical visions and everyday solicitations for pro-
ficiently resolving and streamlining complex networks. While the MD is well known as a graph
invariant, less attention has been fanatical to its performance under EC. The mainstream of MD
inquiry attentions on stagnant structures or slighter conversions like vertex or edge elimination,
whereas EC causes unique essential changes that have principally gone unfamiliar.

Real-world links (e.g., community, genetic, or transportation networks) are frequently amended
to diminish computational complications. Your discoveries can give supervision for resembling
MD in slim varieties of these linkages, possibly impacting productions that trust peak conversion
or firmness performances. Integrating relevant invariants such as diameter, belonging, and chro-
matic number into your investigation or subsequent investigations can considerably increase our
understanding of EC in certain graph families.
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Here’s how you could start it: in addition to MD, graph invariants like as dimension, connect-
edness, and chromatic number offer substantial insightswhenwitnessed via the perspective of EC.
Recognizingwhether EC impacting specific features in graph families such asAntiprism, Petersen,
and Harary graphs can aid in the identification of wider trends and connections in graph theory.
This strategy has the capability to linkMD to other invariants, so boosting intellectual understand-
ing and applications for simplified network simulation and rapid graph feature assessment. By
specifying these invariants, you broaden the extent of what you are investigating, perhaps leading
to a comprehensive framework for predicting how distinct graph properties evolve under struc-
tural changes like EC.

2 Metric Dimension of Edge Contracted Antiprism Graph

The antiprismAð▷
is a 4-regular graph. AntiprismAð▷

consists of an outer cycle u1, u2, . . . , uð▷

and an inner cycle v1, v2, . . . , vð▷
and a set of ð▷ spokes vג▷uג▷ and v1+▷גuג▷ , ▷ג = 1, 2, . . . , ð▷ with

indices taken modulo ð▷. |V (Að▷)| = 2ð▷ and E(Að▷) = 4ð▷. Once more, selecting landmarks
wisely is crucial.
Theorem 2.1. Let Að▷

with ð▷ ⩾ 3 be an Antiprism graph and Að▷
.e be the outer edge contracted An-

tiprism graph then; dim(Að▷
.e) = dim(Að▷

) for ð▷ ⩾ 3.

Proof. Let ð▷ = 2℘▷ and ð▷ = 2℘▷ + 1 for ð▷, even and odd, ℘▷ ∈ Z+ with ℘▷ ≥ 3. Resolving set is
{u1, u2, v3} for ð▷ = 3, and {u1, u2, u3} is a RS for ð▷ = 4, 5. Now for ð▷ ⩾ 6, we will show that RS
for V (Að▷

.e) is {u1, u3, u℘▷+1}. Firstly, we give vertices representation inAð▷
.e as regards {u1, u3}.

We can see that, r(u2|{u1, u3}) = (1, 1) and r(u1|{u1, u3}) = (0, 2) and r(u3|{u1, u3}) = (2, 0).
Typically, the outer cycle vertices are represented as,

Case 1: If ð▷ is odd and ℘▷ = 3, then,

r(uג▷ |{u1, u3}) =
{

▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(ð▷ − ,▷ג ▷ג − 3); ℘▷ + 2 ≤ ▷ג ≤ ð▷ − 1.

Case 2: If ð▷ is odd and ℘▷ ⩾ 4, then,

r(uג▷ |{u1, u3}) =

 ▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(ð▷ − ,▷ג ▷ג − 3); ℘▷ + 2 ≤ ▷ג ≤ ℘▷ + 3,
(ð▷ − ,▷ג ð▷ − ▷ג + 2); ℘▷ + 4 ≤ ▷ג ≤ ð▷ − 1.

Case 3: For even ð▷ and for ℘▷ = 3,

r(uג▷ |{u1, u3}) =
{

▷ג) − 2, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(ð▷ − ,▷ג ▷ג − 3); ℘▷ + 2 ≤ ▷ג ≤ ð▷ − 1.

Case 4: Even ð▷ and for ℘▷ = 4,

r(uג▷ |{u1, u3}) =


▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷,
▷ג) − 2, ▷ג − 3); ▷ג = ℘▷ + 1,
(ð▷ − ,▷ג ▷ג − 3); ▷ג = ℘▷ + 2,
(ð▷ − ,▷ג ▷ג − 4); ℘▷ + 3 ≤ ▷ג ≤ ð▷ − 1.
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Case 5: If ð▷ is even and for ℘▷ ≥ 5,

r(uג▷ |{u1, u3}) =


▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷,
▷ג) − 2, ▷ג − 3); ▷ג = ℘▷ + 1,
(ð▷ − ,▷ג ▷ג − 3); ▷ג = ℘▷ + 2,
(ð▷ − ,▷ג ▷ג − 4); ▷ג = ℘▷ + 3,
(ð▷ − ,▷ג ð▷ − ▷ג + 2); ℘▷ + 4 ≤ ▷ג ≤ ð▷ − 1.

Inner cycles vertices are represented as r(v1|{u1, u3}) = (1, 3) and also for r(v2|{u1, u3}) = (1, 2)
and for r(v3|{u1, u3}) = (2, 1). In general, we’ll talk about two cases.

Case 1: For even ð▷ i.e., ð▷ = 2℘▷ with ℘▷ = 3, then,

r(vג▷ |{u1, u3}) =

 ▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(℘▷ − 1, ℘▷ − 1); ▷ג = ℘▷ + 2,
(℘▷ − 2, ℘▷); ℘▷ + 3 ≤ ▷ג ≤ ð▷.

Case 2: For even ð▷ i.e., ð▷ = 2℘▷ with ℘▷ ≥ 4, then,

r(vג▷ |{u1, u3}) =


▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(℘▷ − 1, ℘▷ − 1); ▷ג = ℘▷ + 2,
(℘▷ − 2, ℘▷); ▷ג = ℘▷ + 3,
(ð▷ − ▷ג + 1, ð▷ − ▷ג + 3); ℘▷ + 4 ≤ ▷ג ≤ ð▷.

Case 3: For odd ð▷ i.e., ð▷ = 2℘▷ + 1with ℘▷ ≥ 3, then,

r(vג▷ |{u1, u3}) =


▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
▷ג) − 2, ▷ג − 3); ▷ג = ℘▷ + 2,
(℘▷ − 1, ℘▷); ▷ג = ℘▷ + 3,
(ð▷ − ▷ג + 1, ð▷ − ▷ג + 3); ℘▷ + 4 ≤ ▷ג ≤ ð▷.

We observe that, uג▷ = vג▷ with 4 ≤ ▷ג ≤ ℘▷, ℘▷ ≥ 4 have the same representation. vp+1, up have
the same representation where ℘▷ + 3 ≤ p ≤ ð▷ − 1, ð▷ is even and ð▷ ≥ 8, ℘▷ ≥ 4. v1 and uð▷−1

have the same representation for ℘▷ ≥ 3 but, {u1, u3} resolve the inner cycle vertices and {u1, u3}
also resolve the outer cycle vertices. We take u℘▷+1 with ℘▷ ≥ 3 to resolve the outer cycle vertices
with the same representation.

d(u℘▷+1, up) =


℘▷ − p; p = 1 (ð▷ is even),
℘▷; p = 1 (ð▷ is odd),
℘▷ − p+ 1; 2 ≤ p ≤ ℘▷,
p− ℘▷ − 1; ℘▷ + 2 ≤ p ≤ ð▷ − 1.

d(u℘▷+1, v1) = ð▷ − ℘▷ and the inner cycle distances are,

d(u℘▷+1, vp) =

 ℘▷ − p+ 2; 2 ≤ p ≤ ℘▷,
1; p = ℘▷ + 1,
p− ℘▷ − 1; ℘▷ + 2 ≤ p ≤ ð▷.

We observe that, u℘▷+1 distinguish the vertices in V (Að▷
.e), which were distinguished neither

by u1 nor by u3. Hence, ℜ = {u1, u3, u℘▷+1} distinguish all vertices in Að▷
.e. This suggests that

dim(Að▷ .e) ≤ 3.

Conversely, we show that dim(Að▷
.e) ≥ 3. On the contrary, assume that dim(Að▷

.e) = 2; we
discuss few cases:
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Case 1: We can fix u1 as a basis vertex once both vertices are in the outer cycle. If the second
vertex is uג▷ , then,
(a) when 2 ≤ ▷ג ≤ ℘▷ − 1, then we observe that,

r(u1+▷ג|{u1, uג▷}) = ,▷ג) 1) = r(v1+▷ג|{u1, uג▷}.

(b) For even ð▷ and ▷ג = ℘▷ + 1, r(v℘▷+3|{u1, uג▷}) = r(u℘▷−1|{u1, uג▷}) and
r(v℘▷+2|{u1, uג▷}) = r(u℘▷

|{u1, uג▷}).
For odd ð▷ and ▷ג = ℘▷ + 1, r(u℘▷

|{u1, uג▷}) = r(u℘▷+2|{u1, uג▷}) and
r(u℘▷−1|{u1, uג▷}) = r(u℘▷+3|{u1, uג▷}) and r(v℘▷−1|{u1, uג▷}) = r(v℘▷+4|{u1, uג▷})
and r(v℘▷ |{u1, uג▷}) = r(v℘▷+3|{u1, uג▷}) and r(v℘▷+1|{u1, uג▷}) = r(v℘▷+2|{u1, uג▷}).

Case 2: If we fix u1 and vג▷ as the second vertex when one of these present in the outer cycle
vertex and next is again in the inner cycle then,
(a) if ▷ג = 1, then r(v3|{u1, vג▷}) = r(vð▷−1|{u1, vג▷}) and

r(v4|{u1, vג▷}) = r(vð▷−2|{u1, vג▷}) and r(u2|{u1, vג▷}) = r(uð▷−1|{u1, vג▷}) and
r(u3|{u1, vג▷}) = r(uð▷−2|{u1, vג▷}).

(b) If ▷ג = 2, then r(v1|{u1, vג▷}) = r(u2|{u1, vג▷}).
(c) If 3 ≤ ▷ג ≤ ℘▷ + 1, then r(v1−▷ג|{u1, vג▷}) = r(u1−▷ג|{u1, vג▷}).

Case 3: We can select v1 as the basis vertex when both vertices belong to the inner cycle. If the
vertex in second basis vג▷ , then if ▷ג = ℘▷ + 1, ð▷ is even, then
r(v2|{v1, vג▷}) = r(vð▷ |{v1, vג▷}). If ð▷ is odd, ▷ג = ℘▷ + 1, then
r(u1|{v1, vג▷}) = r(vð▷

|{v1, vג▷}).

All of the cases discussed above indicate that two vertices are insufficient to resolve a problem
through contraction dim(Að▷ .e) ≥ 3, which yield dim(Að▷ .e) = 3. We know that dim(Að▷) = 3,
so this shows that dim(Að▷ .e) = dim(Að▷).

In Figure 1, (a) Antiprism graph Að▷
and (b) Edge contracted Antiprism graph Að▷

.e are dis-
cussed.
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um u1
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u1

Figure 1: (a) Antiprism graphAð▷ . (b) Edge contracted Antiprism graphAð▷ .e.

618



H. Saleem et al. Malaysian J. Math. Sci. 19(2): 613–635(2025) 613 - 635

Theorem 2.2. Let Að▷
with ð▷ ⩾ 3 be an Antiprism graph and Að▷

.e be the inner edge contracted An-
tiprism graph, then; dim(Að▷

.e) = dim(Að▷
) for ð▷ ⩾ 3.

Theorem 2.3. Let Að▷ with ð▷ ⩾ 3 be an Antiprism graph and Að▷ .e be the middle edge contracted
Antiprism graph, then; dim(Að▷ .e) = dim(Að▷) for ð▷ ⩾ 3.

Proof. Suppose ð▷ = 2℘▷ or ð▷ = 2℘▷ + 1 for ð▷, even and odd where ℘▷ ∈ Z+. Resolving set for
V (Að▷

.e) is {u1, u2, u3} for ð▷ = 3, 4, 5. For ð▷ ⩾ 6, we will prove that RS is {u1, u3, u℘▷+1}.
Firstly, we give vertices representation in Að▷

.e with respect to {u1, u3}. We can observe that
r(u2|{u1, u3}) = (1, 1) and r(u1|{u1, u3}) = (0, 2) and for r(u3|{u1, u3}) = (2, 0), and generally
speaking, the outer cycle vertices are represented as follows:

Case 1: For even ð▷ .i.e, ð▷ = 2℘▷ with ℘▷ = 3, then,

r(uג▷ |{u1, u3}) =
{

▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(ð▷ − ▷ג + 1, ▷ג − 3); ℘▷ + 2 ≤ ▷ג ≤ ð▷.

Case 2: For even ð▷ i.e, ð▷ = 2℘▷ with ℘▷ ≥ 4, then,

r(uג▷ |{u1, u3}) =

 ▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(ð▷ − ▷ג + 1, ▷ג − 3); ℘▷ + 2 ≤ ▷ג ≤ ℘▷ + 3,
(ð▷ − ▷ג + 1, ð▷ − ▷ג + 3); ℘▷ + 4 ≤ ▷ג ≤ ð▷.

Case 3: For odd ð▷ i.e, ð▷ = 2℘▷ + 1with ℘▷ ≥ 3, then,

r(uג▷ |{u1, u3}) =

 ▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(ð▷ − ▷ג + 1, ▷ג − 3); ℘▷ + 2 ≤ ▷ג ≤ ℘▷ + 3,
(ð▷ − ▷ג + 1, ð▷ − ▷ג + 3); ℘▷ + 4 ≤ ▷ג ≤ ð▷.

The inner cycle vertices representation are, r(v1|{u1, u3}) = (1, 3), r(v2|{u1, u3}) = (1, 1),
r(v3|{u1, u3}) = (2, 1), and few cases to be discussed here.

Case 1: For ð▷ even i.e. ð▷ = 2℘▷ with ℘▷ = 3, then,

r(vג▷ |{u1, u3}) =
{

▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(℘▷ − 1, ℘▷ − 1); ℘▷ + 2 ≤ ▷ג ≤ ð▷ − 1.

Case 2: For ð▷ even i.e. ð▷ = 2℘▷ with ℘▷ = 4, then,

r(vג▷ |{u1, u3}) =

 ▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(℘▷ − 1, ℘▷ − 1); ▷ג = ℘▷ + 2,
(℘▷ − 2, ℘▷); ℘▷ + 3 ≤ ▷ג ≤ ð▷ − 1.

Case 3: For ð▷ even i.e. ð▷ = 2℘▷ with ℘▷ ≥ 5, then,

r(vג▷ |{u1, u3}) =


▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
(℘▷ − 1, ℘▷ − 1); ▷ג = ℘▷ + 2,
(℘▷ − 2, ℘▷); ▷ג = ℘▷ + 3,
(ð▷ − ▷ג + 1, ð▷ − ▷ג + 3); ℘▷ + 4 ≤ ▷ג ≤ ð▷ − 1.

Case 4: For odd ð▷ i.e. ð▷ = 2℘▷ + 1with ℘▷ = 3, then,

r(vג▷ |{u1, u3}) =

 ▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
▷ג) − 2, ▷ג − 3); ▷ג = ℘▷ + 2,
(℘▷ − 1, ℘▷); ℘▷ + 3 ≤ ▷ג ≤ ð▷ − 1.
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Case 5: For odd ð▷ i.e. ð▷ = 2℘▷ + 1with ℘▷ ≥ 4, then,

r(vג▷ |{u1, u3}) =


▷ג) − 1, ▷ג − 3); 4 ≤ ▷ג ≤ ℘▷ + 1,
▷ג) − 2, ▷ג − 3); ▷ג = ℘▷ + 2,
(℘▷ − 1, ℘▷); ▷ג = ℘▷ + 3,
(ð▷ − ▷ג + 1, ð▷ − ▷ג + 3); ℘▷ + 4 ≤ ▷ג ≤ ð▷ − 1.

We observed that, here uג▷ = vג▷ with ℘▷ + 3 ≤ ▷ג ≤ ð▷ − 1 where ℘▷ ≥ 4 and v1 = uð▷ have the
same representation, but {u1, u3} resolve inner cycle vertices and {u1, u3} also resolve outer cycle
vertices. We take u℘▷+1 to resolve the outer cycle vertices which have the same representation.

d(u℘▷+1, up) =

{
℘▷ − p+ 1; 1 ≤ p ≤ ℘▷,
p− ℘▷ − 1; ℘▷ + 2 ≤ p ≤ ð▷.

d(u℘▷+1, v1) = ð▷ − ℘▷ and the inner cycle vertices distances are,

d(u℘▷+1, vp) =

 ℘▷ − p+ 1; 2 ≤ p ≤ ℘▷,
1; p = ℘▷ + 1,
p− ℘▷; ℘▷ + 2 ≤ p ≤ ð▷ − 1.

We see that, u℘▷+1 distinguish the vertices in V (Að▷
.e), whichwere distinguished neither by u1 nor

by u3. Hence, ℜ = {u1, u3, u℘▷+1} resolves all vertices in Að▷
.e. This implies that dim(Að▷

.e) ≤ 3.
Conversely, we will show that dim(Að▷

.e) ≥ 3. On the contrary, suppose that dim(Að▷
.e) = 2,

then three cases will be discussed:

Case 1: When both the vertices belong to the outer cycle, thenwe can take u1. Now, if the second
element is uג▷ , then,
(a) For even ð▷ and ▷ג = ℘▷ + 1, r(v℘▷−1|{u1, uג▷}) = r(u℘▷−1|{u1, uג▷},
(b) For odd ð▷ and ▷ג = ℘▷ + 1, r(v℘▷+1|{u1, uג▷}) = r(u℘▷+2|{u1, uג▷}).

Case 2: We fix u1 as the basis vertex and vג▷ as the second basis vertex when outer cycle have
one vertex and second is in the inner cycle again, then,
(a) If ▷ג = 2 then, r(v1|{u1, vג▷}) = r(uð▷ |{u1, vג▷}).

Case 3: We can select v1 as the basis vertex when both vertices are in the inner cycle. If second
basis vertex is vג▷ , then,
(a) If ð▷ is odd and ▷ג = ℘▷ + 1, then r(v2|{v1, vג▷}) = r(uð▷−1|{v1, vג▷}).
(b) If ð▷ is even and ▷ג = ℘▷ + 1, then r(v℘▷

|{v1, vג▷}) = r(u℘▷+1|{v1, vג▷}).

All of the cases discussed above indicate that two vertices are insufficient to resolve a problem
through contraction dim(Að▷ .e) ≥ 3, which yield, dim(Að▷ .e) = 3. We know that dim(Að▷) = 3,
so this shows that dim(Að▷ .e) = dim(Að▷).

In Figure 2, (a) Antiprism graph Að▷
and (b) Edge contracted Antiprism graph Að▷

.e are dis-
cussed.
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Figure 2: (a) Antiprism graphAð▷ . (b) Edge contracted Antiprism graphAð▷ .e.

3 Metric Dimension of Edge Contracted Petersen Graph

The generalizedPetersen graphP(ð▷, ℘▷), ð▷ ≥ 3 contain verticesV = {y1, y2, . . . yn, x1, x2, . . . xn}
and an edges E = {yג▷y1+▷ג, yג▷xג▷ , xג▷xג▷+℘▷ | with indices taken modulo ð▷}. To achieve our
target, we name the cycle produced by {y1, y2, . . . yð▷} outer cycle and {x1, x2, . . . xð▷} inner cycle.
It should be noted that the core issue is the selection of suitable basis vertices.
Theorem3.1. LetP(ð▷, 2) be the generalized Petersen graph and (P(ð▷, 2).e) be the outer EC of generalized
Petersen graph then; dim(P(ð▷, 2).e) = dim(P(ð▷, 2)) for ð▷ ≥ 5.

Proof. We will to show that, three vertices appropriately chosen suffices to distinguish all vertices
in V (P(ð▷, 2).e). We discuss few cases here:

Case 1: ð▷ ≡ 0( mod 4)
We take ð▷ = 4u▷, u▷ ≥ 2 and u▷ ∈ Z+. Here, ℜ1 = {x1, x2, x3} resolves V (P(ð▷, 2).e).
Indeed, x1 and x2 resolve inner and outer cycle vertices. To show that ℜ1 = {x1, x2, x3}
resolves vertices (P(ð▷, 2).e), first we give (P(ð▷, 2).e) vertices representation regards as
ℜ = {x1, x2}. Outer cycle vertices representation are r(y1|ℜ) = (1, 2) and also
r(y2|ℜ) = (2, 1),

r(y2ג▷ |ℜ) =
{

▷ג) + 1, ;(▷ג 2 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 2); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1,

and

r(y21+▷ג|ℜ) =

 ▷ג) + 1, ▷ג + 1); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 2); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 2,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 1); ▷ג = 2u▷ − 1,
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and in the inner cycle,

r(x2ג▷ |ℜ) =
{

▷ג) + 2, ▷ג − 1); 2 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 1); u▷ + 1 ≤ ▷ג ≤ 2u▷,

and

r(x21+▷ג|ℜ) =

 ,▷ג) ▷ג + 2); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ,▷ג 2u▷ − ▷ג + 3); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 2,
(2u▷ − ,▷ג 2u▷ − ▷ג + 2); ▷ג = 2u▷ − 1.

In the inner cycles, take note that any two vertices have not matching representation.
Additionally, neither inner nor outer cycles vertices share a representation, but outer
cycle have, r(y3+ג▷ |ℜ) = r(yð▷−ג▷ |ℜ) for ▷ג = 2, 4, . . . 2u▷ − 2 and (y3|ℜ) = r(yð▷−1|ℜ).

Vertex x3 resolve the same representation as,

d(x3, y3+ג▷) =

⌊
3 + ▷ג

2

⌋
̸= d(x3, yð▷−ג▷) =

⌊
3 + ▷ג

2

⌋
+ 1, for ▷ג = 2, 4, . . . 2u▷ − 4,

and d(x3, y3) =

⌊
3

2

⌋
̸= d(x3, yð▷−1) =

⌊
3

2

⌋
+ 2 and d(x3, y2u▷+2) = d(x3, y2u▷+1) +

1. This suggest that ℜ1 = {x1, x2, x3} resolve vertices of (P(ð▷, 2).e) which means
dim(P(ð▷, 2).e) ≤ 3when ð▷ ≡ 0( mod 4).

Conversely, we will express dim(P(ð▷, 2).e) ≥ 3. Assume contrary that
dim(P(ð▷, 2).e) = 2, then there are three cases to be discussed.
Case i: We can fix y1 as a basis vertex once both vertices are in the outer cycle. At least

two vertices will have the same representation which is a contraction, if the
second element in the basis is yג▷ .
(a) If ▷ג = 2, then r(yð▷−1|{y1, yג▷}) = r(x1|{y1, yג▷}) = (1, 2).
(b) If ▷ג = 3, 5, . . . 2u▷−1, then r(x1+▷ג|{y1, yג▷}) = r(x2+▷ג|{y1, yג▷}). Further

if, ▷ג = 2u▷ + 1, then r(x2u▷
|{y1, yג▷}) = r(x2u▷+2|{y1, yג▷}).

(c) If ▷ג = 4, 6, . . . 2u▷, then r(x2|{y1, yג▷}) =
(
2,

▷ג
2

)
= r(x3|{y1, yג▷}).

Case ii: Once both vertices belong to the outer cycle, we can take y1. If the second ver-
tex is yג▷ , at least two vertices will have the same representation, which is a
contraction.
(a) If ▷ג = 1, then r(y2|{y1, xג▷}) = r(yð▷−1|{y1, xג▷}).
(b) If ▷ג = 2, then r(x3|{y1, xג▷}) = r(xð▷−1|{y1, xג▷}).
(c) If ▷ג = 3, then r(x2|{y1, xג▷}) = (2, 3). For

▷ג = 2u▷ + 1, r(x2|{y1, xג▷}) = r(xð▷ |{y1, xג▷}).
(d) If ▷ג = 4, 6, . . . , 2u▷, then r(y3|{y1, xג▷}) = r(xð▷

|{y1, xג▷}).
Case iii: We can take x1, when both vertices belong the inner cycle. If xג▷ is the second

vertex, then at least two elements with the same representation will be found,
resulting in a contraction.
(a) If ▷ג = 2, then r(y3|{x1, xג▷}) = r(yð▷−1|{x1, xג▷}).
(b) If ▷ג = 3, 5, . . . , 2u▷ − 1, then r(y1+▷ג|{x1, xג▷}) = r(y2+▷ג|{x1, xג▷}) and

for ▷ג = 2u▷ + 1, r(x2u▷
|{x1, xג▷}) = r(x2u▷+2|{x1, xג▷}).

(c) If ▷ג = 4, 6, . . . , 2u▷, then r(y2−▷ג|{x1, xג▷}) = r(y1−▷ג|{x1, xג▷}). All above
cases suggest that, dim(P(ð▷, 2).e) ≥ 3. Which means that,
dim(P(ð▷, 2).e) = 3, when ð▷ ≡ 0( mod 4).
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Case 2: ð▷ ≡ 2( mod 4)
We see that ð▷ = 4u▷ + 2 with u▷ ≥ 1 and u▷ ∈ Z

+. Again in this, we will show
that {x1, x2, x3} resolve V (P(ð▷, 2).e). Again x1 and x2 resolve the inner cycle vertices
and they will also distinguish outer cycle vertices and the inner cycle. To show that
{x1, x2, x3} resolve vertices of V (P(ð▷, 2).e). We give V (P(ð▷, 2).e) vertices representa-
tion as regards {x1, x2}. Outer cycle vertices representation are, (y1|{x1, x2} = (1, 2)
and (y2|{x1, x2} = (2, 1),

r(y2ג▷ |ℜ) =
{

▷ג) + 1, ;(▷ג 2 ≤ ▷ג ≤ u▷ + 1,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 3); u▷ + 3 ≤ ▷ג ≤ 2u▷,

and

r(y21+▷ג|ℜ) =

 ▷ג) + 1, ▷ג + 1); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 3); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 2); ▷ג = 2u▷.

And inner cycle have,

r(x2ג▷ |ℜ) =
{

▷ג) + 2, ▷ג − 1); 2 ≤ ▷ג ≤ u▷ + 1,
(2u▷ − ▷ג + 4, 2u▷ − ▷ג + 2); u▷ + 2 ≤ ▷ג ≤ 2u▷ + 1,

and

r(x21+▷ג|ℜ) =

 ,▷ג) ▷ג + 2); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 4); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 3); ▷ג = 2u▷.

Once more, in the inner cycle vertices, no two have the same representation in this
instance. Additionally, same represented vertices are not present in the inner and outer
cycle. But the outer cycle have, r(y3+ג▷ |ℜ) = r(yð▷−ג▷ |ℜ) for ▷ג = 2, 4, . . . 2u▷ − 2 and
r(y3|ℜ) = r(yð▷−1|ℜ) Vertex x3 resolve same representation vertices as,

d(x3, y3) =

⌊
3

2

⌋
̸= d(x3, yð▷−1) =

⌊
3

2

⌋
+ 2,

and

d(x3, y3+ג▷) =

⌊
3 + ▷ג

2

⌋
̸= d(x3, yð▷−ג▷) =

⌊
3 + ▷ג

2

⌋
+ 2,

for ▷ג = 2, 4, . . . , 2u▷ − 2. This suggest that {x1, x2, x3} resolve vertices of P(ð▷, 2).e)
which means dim(P(ð▷, 2).e) ≤ 3 when ð▷ ≡ 2( mod 4). On the other hand, from
Case i, dim(P(ð▷, 2).e) ≤ 3. Hence, dim(P(ð▷, 2).e) = 3 for ð▷ ≡ 2( mod 4).

Case 3: ð▷ ≡ 1( mod 4)
We see that ð▷ = 4u▷+1, with u▷ ≥ 1 and u▷ ∈ Z+. We can see that, RS is {x1, x2, y3} for
standard Petersen graph (P(5, 2).e). W = {x1, x2, y4} resolve all vertices in (P(9, 2).e)
as the represented vertices are, r(y1|W ) = (1, 2, 3) and r(y2|W ) = (2, 1, 2) and
r(y3|W ) = (2, 2, 1) and r(y4|W ) = (3, 2, 0) and for r(y5|W ) = (3, 3, 1) and
r(y6|W ) = (3, 3, 2) and r(y7|W ) = (3, 3, 3) and r(y8|W ) = (2, 2, 4) and
r(x1|W ) = (0, 3, 3) and r(x2|W ) = (3, 0, 2) and r(x3|W ) = (1, 3, 2) and
r(x4|W ) = (3, 1, 1) and for r(x5|W ) = (2, 3, 2) and r(x6|W ) = (2, 2, 2) and
r(x7|W ) = (3, 2, 3) and also r(x8|W ) = (1, 3, 3) that is r(x9|W ) = (3, 1, 3).
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For ð▷ ≥ 13, we will show that {x1, x2, y2u▷−1} resolve vertices of (P(ð▷, 2).e) where,
ð▷ ≡ 1( mod 4). For this, first we give represented vertices as regards {x1, x2}. The
outer cycle vertices are represented as, r(y1|ℜ) = (1, 2) and r(y2|ℜ) = (2, 1),

r(y2ג▷ |ℜ) =


▷ג) + 1, ;(▷ג 2 ≤ ▷ג ≤ u▷,
,▷ג) ;(▷ג ▷ג = u▷ + 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 1); u▷ + 2 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 2); ▷ג = 2u▷,

r(y21+▷ג|ℜ) =
{

▷ג) + 1, ▷ג + 1); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 2); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1.

Now in the inner cycle,

r(x2ג▷ |ℜ) =



▷ג) + 2, ▷ג − 1); 2 ≤ ▷ג ≤ u▷ − 1,
▷ג) + 1, ▷ג − 1); ▷ג = u▷,
▷ג) − 1, ▷ג − 1) ▷ג = u▷ + 1,
▷ג) − 3, ▷ג − 1); ▷ג = u▷ + 2,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 4); u▷ + 3 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 3); ▷ג = 2u▷,

and

r(x21+▷ג|ℜ) =


,▷ג) ▷ג + 2); 1 ≤ ▷ג ≤ u▷ − 1,
,▷ג) ▷ג + 1); ▷ג = u▷,
,▷ג) ▷ג − 1); ▷ג = u▷ + 1,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 1); u▷ + 2 ≤ ▷ג ≤ 2u▷.

Note that, {x1, x2} resolves all but the following vertices y3 and yð▷−1, y2u▷−1 and y2u▷+5

and x2u▷+2, y2u▷+1 and y2u▷+2 and y2u▷+3, x2u▷−1 and x2u▷+4, x2u▷ and y2u▷+5, y2u▷ and
x2u▷+3, x2u▷+1 and y2u▷+4.

We see that outer cycle vertices that have the same representation are located at var-
ious distances from y2u▷−1 which are d(y2u▷−1, y2u▷+5) = 5, d(y2u▷−1, x2u▷+2) = 3,
d(y2u▷−1, x2u▷−1) = 1, d(y2u▷−1, x2u▷+4) = 4, d(y2u▷−1, x2u▷

) = 2, d(y2u▷−1, x2u▷+5) = 4,
d(y2u▷−1, y2u▷

) = 1, d(y2u▷−1, x2u▷+3) = 3, d(y2u▷−1, x2u▷+1) = 2, d(y2u▷−1, y2u▷+4) = 5.

The aforementioned suggests that, RS {x1, x2, y2u▷−1} for V (P(ð▷, 2).e)when
ð▷ ≡ 1( mod 4) and ð▷ ≥ 13. Hence, dim(P(ð▷, 2).e) ≤ 3 for ð▷ ≡ 1( mod 4). Argu-
ments express that, dim(P(ð▷, 2).e) ≥ 3 are analogous with Case 1 hence
dim(P(ð▷, 2).e) = 3 even for ð▷ ≡ 3( mod 4).

Case 4: ð▷ ≡ 3( mod 4)
Wewrite ð▷ = 4u▷+3with u▷ ≥ 1 and u▷ ∈ Z+. It is not tough to see that, {x1, x2, y3} is
a RS for V (P(7, 2).e). For ð▷ ≡ 3( mod 4) and also here ð▷ ≥ 11, we next express that
{x1, x2, y2u▷+1} resolves V (P(ð▷, 2).e). We give representation of the vertices as regards
{x1, x2}. Outer cycle vertices are represented as r(y1|ℜ) = (1, 2) and for r(y2|ℜ) = (2, 1),

r(y2ג▷ |ℜ) =

 ▷ג) + 1, ;(▷ג 2 ≤ ▷ג ≤ u▷ + 1,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 4); u▷ + 2 ≤ ▷ג ≤ 2u▷,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 3); ▷ג = 2u▷ + 1,

and

r(y21+▷ג|ℜ) =
{

▷ג) + 1, ▷ג + 1); 1 ≤ ▷ג ≤ u▷ + 1,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 3); u▷ + 2 ≤ ▷ג ≤ 2u▷.
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Now inner cycle have,

r(x2ג▷ |ℜ) =


▷ג) + 2, ▷ג − 1); 2 ≤ ▷ג ≤ u▷,
,▷ג) ▷ג − 1); ▷ג = u▷ + 1
▷ג) − 2, ▷ג − 1); ▷ג = u▷ + 2,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 5); u▷ + 3 ≤ ▷ג ≤ 2u▷,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 4); ▷ג = 2u▷ + 1,

r(x21+▷ג|ℜ) =

 ,▷ג) ▷ג + 2); 1 ≤ ▷ג ≤ u▷,
,▷ג) ;(▷ג ▷ג = u▷ + 1,
(2u▷ − ▷ג + 4, 2u▷ − ▷ג + 2); u▷ + 2 ≤ ▷ג ≤ 2u▷ + 1.

Again in this case, {x1, x2} resolve all the vertices in (P(ð▷, 2).e) but the following. y3
and yð▷−1, y2u▷

and x2u▷+2, y2u▷+1 and y2u▷+5 and x2u▷+3, x2u▷+4 and y2u▷+6. It can be
seen that the outer cycle vertices with the same representation are resolve from u2u▷+1

at different distances. d(y2u▷+1, y2u▷
) = 1, d(y2u▷+1, x2u▷+2) = 2, d(y2u▷+1, y2u▷+5) = 4,

d(y2u▷+1, x2u▷+3) = 2, d(y2u▷+1, x2u▷+4) = 3, d(y2u▷+1, y2u▷+6) = 5.

Hence, RS for V (P(ð▷, 2).e) is {x1, x2, x2u▷+1}when ð▷ ≡ 3( mod 4) and like the same
above discussed cases, arguments similar to Case 1 suggest that, dim(P(ð▷, 2).e) ≥ 3
hence, dim(P(ð▷, 2).e) = 3 for ð▷ ≡ 3( mod 4). We notice that, to resolve all vertices in
(P(ð▷, 2).e) only three vertices suffices, for any value of ð▷ ≥ 5which express that gen-
eralized Petersen graph (P(ð▷, 2).e) constitute constant MD of few families of graphs.
Since dim(P(ð▷, 2)) = 3, this shows that dim(P(ð▷, 2)) = dim(P(ð▷, 2).e).

In Figure 3, (a) Petersen graph P(ð▷, 2) and (b) Edge contracted Petersen graph P(ð▷, 2).e are
discussed.
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Figure 3: (a) Petersen graph P(ð▷, 2). (b) Edge contracted Petersen graph P(ð▷, 2).e.
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Theorem 3.2. LetP(ð▷, 2) be the generalized Petersen graph and (P(ð▷, 2).e) be the middle edge contracted
generalized Petersen graph, then; dim(P(ð▷, 2).e) = dim(P(ð▷, 2)) for ð▷ ≥ 5.

Proof. Wewill show that to resolve all vertices inV (P(ð▷, 2).e), three vertices appropriately chosen.
We shall discuss few cases.

Case 1: ð▷ ≡ 0( mod 4)
Wesee that ð▷ = 4u▷, u▷ ≥ 2 and u▷ ∈ Z+. Here,ℜ1 = {x1, x2, x3} resolvesV (P(ð▷, 2).e).
Indeed, x1 and x2 resolve outer cycle vertices and the inner cycles. To show that
ℜ1 = {x1, x2, x3} resolves vertices of (P(ð▷, 2).e), firstly representations of the vertices
in (P(ð▷, 2).e) as regards ℜ = {x1, x2}.

Outer cycle vertices representation are, r(y1|ℜ) = (1, 2) and also r(y2|ℜ) = (2, 1),

r(y2ג▷ |ℜ) =

 ▷ג) + 1, ;(▷ג 2 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 2); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 1); ▷ג = 2u▷,

and

r(y21+▷ג|ℜ) =

 ▷ג) + 1, ▷ג + 1); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 2); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 2,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 1); ▷ג = 2u▷ − 1.

And, in the inner cycles,

r(x2ג▷ |ℜ) =
{

▷ג) + 2, ▷ג − 1); 2 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 1); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1,

and

r(x21+▷ג|ℜ) =

 ,▷ג) ▷ג + 2); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ,▷ג 2u▷ − ▷ג + 3); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 2,
(2u▷ − ,▷ג 2u▷ − ▷ג + 2); ▷ג = 2u▷ − 1.

Note that inner cycle vertices have no same representation. Inner cycles have no ver-
tices and outer cycle which have the common representation. But in the outer cycle,
r(y3+ג▷ |ℜ) = r(yð▷−ג▷ |ℜ) for ▷ג = 2, 4, . . . 2u▷ − 2 and (y3|ℜ) = r(yð▷−1|ℜ).

Vertex x3 resolve the same representations of the vertices as,

d(x3, y3+ג▷) =

⌊
3 + ▷ג

2

⌋
̸= d(x3, yð▷−ג▷) =

⌊
3 + ▷ג

2

⌋
+ 2, for ▷ג = 2, 4, . . . 2u▷ − 4,

and d(x3, y3) =

⌊
3

2

⌋
̸= d(x3, yð▷−1) =

⌊
3

2

⌋
+ 2 and

d(x3, y2u▷+2) = d(x3, y2u▷+1) + 1.

This suggest that ℜ1 = {x1, x2, x3} resolves vertices of (P(ð▷, 2).e), which means
dim(P(ð▷, 2).e) ≤ 3when ð▷ ≡ 0( mod 4).

Conversely, we will express, dim(P(ð▷, 2).e) ≥ 3. Assume in contrary that,
dim(P(ð▷, 2).e) = 2, then there are few cases to be discussed.
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Case i: If both vertices belong to outer cycle, then we take y1. Now, if the second vertex
is yג▷ , then we will find at least two vertices with the same representation, a
contraction.
(a) If ▷ג = 2, then r(yð▷ |{y1, yג▷}) = r(x1|{y1, yג▷}) = (1, 2).
(b) If ▷ג = 3, 5, . . . 2u▷ − 1, then r(x1+▷ג|{y1, yג▷}) = r(x2+▷ג|{y1, yג▷}).
(c) If ▷ג = 4, 6, . . . 2u▷, then r(x2|{y1, yג▷}) =

(
2,

▷ג
2

)
= r(x3|{y1, yג▷}).

Case ii: When one vertex belong to the outer cycle and second belong to the inner cycle,
then again we can take y1. If the second vertex is xג▷ , then we will find at least
two element with the same representation leading to a contraction.
(a) If ▷ג = 1, then r(y2|{y1, xג▷}) = r(yð▷

|{y1, xג▷}).
(b) If ▷ג = 2, then r(y3|{y1, xג▷}) = r(xð▷−2|{y1, xג▷}) = r(yð▷−1|{y1, xג▷}.
(c) If ▷ג = 3, 5, . . . 2u▷ − 1, then r(x2|{y1, xג▷}) = r(yð▷−1|{y1, xג▷}) and for

▷ג = 2u▷ + 1, r(x3|{y1, xג▷}) = r(xð▷−1|{y1, xג▷}),
r(x5|{y1, xג▷}) = r(xð▷−3|{y1, xג▷}).

(d) If ▷ג = 4, 6, . . . , 2u▷, then r(y2|{x1, xג▷}) = r(yð▷ |{y1, xג▷}).
Case iii: When both the vertex belong to the inner cycle, then we can take x1. If the

second vertex is xג▷ , then we will find at least two element with the same rep-
resentation leading to a contraction.
(a) If ▷ג = 2, then r(y3|{x1, yג▷}) = r(yð▷−1|{x1, xג▷}).
(b) If ▷ג = 3, 5, . . . , 2u▷ − 1, then r(y1+▷ג|{x1, xג▷}) = r(y2+▷ג|{y1, xג▷}) and

for ▷ג = 2u▷ + 1, r(x2u▷
|{x1, xג▷}) = r(x2u▷+2|{x1, xג▷}).

(c) If ▷ג = 4, 6, . . . , 2u▷, then r(y2−▷ג|{x1, xג▷}) = r(y1−▷ג|{x1, xג▷}). All above
cases suggest that, dim(P(ð▷, 2).e) ≥ 3. Which means that,
dim(P(ð▷, 2).e) = 3. when ð▷ ≡ 0( mod 4).

Case 2: ð▷ ≡ 2( mod 4)
We take ð▷ = 4u▷ + 2 with u▷ ≥ 1 and u▷ ∈ Z

+. Again, in this case, we will show
that {x1, x2, x3} resolves V (P(ð▷, 2).e). Again, x1 and x2 will resolve the inner cycle
vertices and they will also resolve the outer cycle vertices and the inner cycles. To show
that {x1, x2, x3} resolves vertices of V (P(ð▷, 2).e), we give vertices representation in
V (P(ð▷, 2).e) as regards {x1, x2}. Outer cycle vertices representation are (y1|ℜ) = (1, 2)
and (y2|ℜ) = (2, 1),

r(y2ג▷ |ℜ) =

 ▷ג) + 1, ;(▷ג 2 ≤ ▷ג ≤ u▷ + 1,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 3); u▷ + 2 ≤ ▷ג ≤ 2u▷,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 2); ▷ג = 2u▷ + 1,

and

r(y21+▷ג|ℜ) =

 ▷ג) + 1, ▷ג + 1); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 3); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 2); ▷ג = 2u▷.

And, in the inner cycles,

r(x2ג▷ |ℜ) =
{

▷ג) + 2, ▷ג − 1); 2 ≤ ▷ג ≤ u▷ + 1,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 2); u▷ + 2 ≤ ▷ג ≤ 2u▷,

and

r(x21+▷ג|ℜ) =

 ,▷ג) ▷ג + 2); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 4); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 3); ▷ג = 2u▷.
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Again, in this case, inner cycle vertices give no common representation. Inner cycles
and outer cycle have no same represented vertices. But outer cycle have
r(y3+ג▷ |ℜ) = r(yð▷−ג▷ |ℜ) for ▷ג = 2, 4, . . . 2u▷ − 2 and r(y3|ℜ) = r(yð▷−1|ℜ). Vertex x3

resolve the same represented vertices as d(x3, y3) =

⌊
3

2

⌋
̸= d(x3, yð▷−1) =

⌊
3

2

⌋
+2 and

d(x3, y3+ג▷) =

⌊
3 + ▷ג

2

⌋
̸= d(x3, yð▷−ג▷) =

⌊
3 + ▷ג

2

⌋
+ 2 for ▷ג = 2, 4, . . . , 2u▷ − 2. This

suggest that {x1, x2, x3} resolve vertices ofP(ð▷, 2).e), whichmeans dim(P(ð▷, 2).e) ≤ 3
when ð▷ ≡ 2( mod 4).

On the other hand, from Case i, dim(P(ð▷, 2).e) ≤ 3. Hence, dim(P(ð▷, 2).e) = 3 for
ð▷ ≡ 2( mod 4).

Case 3: ð▷ ≡ 1( mod 4)
We take ð▷ = 4u▷ + 1, with u▷ ≥ 1 and u▷ ∈ Z

+. We can see that RS is {x1, x2, y3} for
standard Petersen graph (P(5, 2).e). W = {x1, x2, y4} resolve all vertices in (P(9, 2).e)
as the represented vertices are r(y1|W ) = (1, 2, 3) and r(y2|W ) = (2, 1, 2) and
r(y3|W ) = (2, 2, 1) and r(y4|W ) = (3, 2, 0) and r(y5|W ) = (3, 3, 1) and
r(y6|W ) = (3, 3, 2) and r(y7|W ) = (3, 3, 3) and r(y8|W ) = (2, 2, 4) and
r(y9|W ) = (2, 1, 3) and r(x1|W ) = (0, 3, 3) and also r(x2|W ) = (3, 0, 2) and
r(x3|W ) = (1, 3, 2) and r(x4|W ) = (4, 1, 1) and r(x5|W ) = (2, 4, 1) and also
r(x6|W ) = (2, 2, 2) and r(x7|W ) = (3, 2, 3) and r(x8|W ) = (1, 4, 4).

For ð▷ ≥ 13, we will show that {x1, x2, y2u▷−1} resolve vertices of (P(ð▷, 2).e) where,
ð▷ ≡ 1( mod 4). For this, first we give vertices representation with respect to {x1, x2}.
Outer cycle vertices representation are, r(y1|ℜ) = (1, 2) and r(y2|ℜ) = (2, 1),

r(y2ג▷ |ℜ) =


▷ג) + 1, ;(▷ג 2 ≤ ▷ג ≤ u▷,
,▷ג) ;(▷ג ▷ג = u▷ + 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 3); u▷ + 2 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 2); ▷ג = 2u▷,

r(y21+▷ג|ℜ) =

 ▷ג) + 1, ▷ג + 1); 1 ≤ ▷ג ≤ u▷,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 2); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 1); ▷ג = 2u▷.

Now in the inner cycle,

r(x2ג▷ |ℜ) =



▷ג) + 2, ▷ג − 1); 2 ≤ ▷ג ≤ u▷ − 1,
▷ג) + 1, ▷ג − 1); ▷ג = u▷,
▷ג) − 1, ▷ג − 1) ▷ג = u▷ + 1,
▷ג) − 3, ▷ג − 1); ▷ג = u▷ + 2,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 4); u▷ + 3 ≤ ▷ג ≤ 2u▷ − 1,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 3); ▷ג = 2u▷.

and

r(x21+▷ג|ℜ) =



,▷ג) ▷ג + 2); 1 ≤ ▷ג ≤ u▷ − 1,
,▷ג) ▷ג + 1); ▷ג = u▷,
,▷ג) ▷ג − 1); ▷ג = u▷ + 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 1); ▷ג = u▷ + 2,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 1); u▷ + 3 ≤ ▷ג ≤ 2u▷ − 2,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 1); ▷ג = 2u▷ − 1.

Note that, {x1, x2} resolves all but the following vertices. y3 and yð▷−1, y2u▷−1 and
y2u▷+5 and x2u▷+2, y2u▷+1 and y2u▷+2 and also y2u▷+3, x2u▷−1 and x2u▷+4. We can see
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that, outer cycle vertices which have same representation are at dissimilar distances
from y2u▷−1. That is d(y2u▷−1, y2u▷+5) = 5, d(y2u▷−1, x2u▷+2) = 3, d(y2u▷−1, x2u▷−1) = 1,
d(y2u▷−1, x2u▷+4) = 4, d(y2u▷−1, x2u▷

) = 2, d(y2u▷−1, x2u▷+5) = 4, d(y2u▷−1, y2u▷
) = 1,

d(y2u▷−1, x2u▷+3) = 3, d(y2u▷−1, x2u▷+1) = 2, d(y2u▷−1, y2u▷+4) = 5. The above discus-
sion suggests that {x1, x2, y2u▷−1} is a RS for V (P(ð▷, 2).e) when ð▷ ≡ 1( mod 4) and
ð▷ ≥ 13. Hence, dim(P(ð▷, 2).e) ≤ 3 for ð▷ ≡ 1( mod 4).

Arguments show that, dim(P(ð▷, 2).e) ≥ 3 are analogous with Case 1 hence,
dim(P(ð▷, 2).e) = 3 even for ð▷ ≡ 3( mod 4).

Case 4: ð▷ ≡ 3( mod 4)
We write ð▷ = 4u▷ + 3 with u▷ ≥ 1 and u▷ ∈ Z

+. It is not tough to observe that
{x1, x2, y3} for V (P(7, 2).e) is a RS. As ð▷ ≡ 3( mod 4) and also ð▷ ≥ 11, we will show
that {x1, x2, y2u▷+1} resolves V (P(ð▷, 2).e). We give representation of the vertices with
regards as {x1, x2}. Outer cycle vertices representation are r(y1|ℜ) = (1, 2) and also
r(y2|ℜ) = (2, 1),

r(y2ג▷ |ℜ) =

 ▷ג) + 1, ;(▷ג 2 ≤ ▷ג ≤ u▷ + 1,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 4); u▷ + 2 ≤ ▷ג ≤ 2u▷,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 3); ▷ג = 2u▷ + 1,

and

r(y21+▷ג|ℜ) =

 ▷ג) + 1, ▷ג + 1); 1 ≤ ▷ג ≤ u▷ + 1,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 3); u▷ + 2 ≤ ▷ג ≤ 2u▷,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 2); ▷ג = 2u▷ + 1.

Now, inner cycle have,

r(x2ג▷ |ℜ) =


▷ג) + 2, ▷ג − 1); 2 ≤ ▷ג ≤ u▷,
,▷ג) ▷ג − 1); ▷ג = u▷ + 1,
▷ג) − 2, ▷ג − 1); ▷ג = u▷ + 2,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 5); u▷ + 3 ≤ ▷ג ≤ 2u▷,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 4); ▷ג = 2u▷ + 1,

r(x21+▷ג|ℜ) =

 ,▷ג) ▷ג + 2); 1 ≤ ▷ג ≤ u▷,
,▷ג) ;(▷ג ▷ג = u▷ + 1,
(2u▷ − ▷ג + 3, 2u▷ − ▷ג + 2); u▷ + 2 ≤ ▷ג ≤ 2u▷.

Again in this case, {x1, x2} resolve all the vertices in (P(ð▷, 2).e) but the following. y3+ג▷
and yð▷−ג▷ for ▷ג = 0, 2, . . . 2u▷ − 4, y2u▷

and x2u▷+2, y2u▷+1 and y2u▷+5 and x2u▷+3.
We see that the vertices in the outer cycle with the same representation are located
at various distances from y2u▷+1. That is d(y2u▷+1, y2u▷) = 1, d(y2u▷+1, y2u▷+5) = 4,
d(y2u▷+1, x2u▷+3) = 2, d(y2u▷+1, x2u▷+4) = 3, d(y2u▷+1, y2u▷+6) = 5. Hence, RS
{x1, x2, x2u▷+1} for V (P(ð▷, 2).e) when ð▷ ≡ 3( mod 4) and like the same above dis-
cussed cases, arguments similar to Case 1 suggest that, dim(P(ð▷, 2).e) ≥ 3, hence,
dim(P(ð▷, 2).e) = 3 for ð▷ ≡ 3( mod 4).

We see that only three vertices suffices to resolve (P(ð▷, 2).e) all vertices for any value
of ð▷ ≥ 5 which express that, generalized Petersen graph (P(ð▷, 2).e) create a col-
lection of graphs which has constant MD. Since dim(P(ð▷, 2)) = 3, this shows that
dim(P(ð▷, 2)) = dim(P(ð▷, 2).e).

In Figure 4, (a) Petersen graph P(ð▷, 2) and (b) Edge contracted Petersen graph P(ð▷, 2).e are
discussed.
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Figure 4: (a) Petersen graph P(ð▷, 2). (b) Edge contracted Petersen graph P(ð▷, 2).e.

Theorem3.3. LetP(ð▷, 2) be the generalized Petersen graph and (P(ð▷, 2).e) be the inner EC of generalized
Petersen graph, then, dim(P(ð▷, 2).e) = dim(P(ð▷, 2)) for ð▷ ≥ 5.

4 Metric Dimension of Edge Contracted Harary Graph

Harary graph Hn,ð▷
is an n-regular graph having vertex set V (Hn,ð▷

) = {v1, v2, . . . , vð▷
} with

smallest possible number of edges is
[mn

2

]
, where [x] is the ceilling function. Here, selecting

landmarks wisely is crucial.
Definition 4.1. [13] For a graph G = (V,E) the Harary edge-contracted graph, signified as G/e, is
molded by:

1. Contracting an edge e = (u, v) ∈ E, where u and v are distinctive vertices.

2. Combining the vertices u and v into a single vertex w.

3. Eliminating any self-loops that form from w to itself.

4. While preserving all other edges that were incident to u and v, now attaching them to w.

Theorem 4.1. Let H4,ð▷ be a 4-regular Harary graph with ð▷ ⩾ 5; then the outer edge contracted MD of
H4,ð▷ .e is,

β(H4,ð▷
.e) =

 β(H4,ð▷
), if ð▷ ≡ 0, 3( mod 4),

3, if ð▷ ≡ 1( mod 4),
4, otherwise.

Proof. Suppose ℜ = {v1, v2, v3} be any arbitrary subset of V (H4,ð▷
.e). We have to express that ℜ

distinguish all H4,ð▷
.e vertices except when ð▷ ≡ 2 ( mod 4). Here, we discuss few cases.

630



H. Saleem et al. Malaysian J. Math. Sci. 19(2): 613–635(2025) 613 - 635

Case 1: If we take ð▷ ≡ 0 ( mod 4) i.e., ð▷ = 4u▷, u▷(≥ 3) ∈ Z+, then,

r(v2ג▷ |ℜ) =

 ,▷ג) ▷ג − 1, ▷ג − 1); 2 ≤ ▷ג ≤ u▷,
(u▷ − 1, u▷, u▷); ▷ג = u▷ + 1,
(2u▷ − ,▷ג 2u▷ − ▷ג + 1, 2u▷ − ▷ג + 2); u▷ + 2 ≤ ▷ג ≤ 2u▷ − 1,

and also,

r(v21+▷ג|ℜ) =

 ▷ג) + 1, ,▷ג ▷ג − 1); 2 ≤ ▷ג ≤ u▷ − 1,
,▷ג) ,▷ג ▷ג − 1); ▷ג = u▷,
(2u▷ − ,▷ג 2u▷ − ,▷ג 2u▷ − ▷ג + 1); u▷ + 1 ≤ ▷ג ≤ 2u▷ − 1.

We observe that all H4,ð▷
.e vertices have dissimilar representation as regards ℜ which

give dim(H4,ð▷
.e) ≤ 3when ð▷ ≡ 0 ( mod 4).

Case 2: If we take ð▷ ≡ 1 ( mod 4) i.e., ð▷ = 4u▷ + 1, u▷(≥ 3) ∈ Z+, then,

r(v2ג▷ |ℜ) =

 ,▷ג) ▷ג − 1, ▷ג − 1); 2 ≤ ▷ג ≤ u▷,
(u▷, u▷, u▷); ▷ג = u▷ + 1,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 1, 2u▷ − ▷ג + 2); u▷ + 2 ≤ ▷ג ≤ 2u▷,

and also,

r(v21+▷ג|ℜ) =


▷ג) + 1, ,▷ג ▷ג − 1); 2 ≤ ▷ג ≤ u▷ − 1,
,▷ג) ,▷ג ▷ג − 1); ▷ג = u▷,
(u▷ − 1, u▷, u▷); ▷ג = u▷ + 1,
(2u▷ − ,▷ג 2u▷ − ▷ג + 1, 2u▷ − ▷ג + 2); u▷ + 2 ≤ ▷ג ≤ 2u▷ − 1.

Once more all H4,ð▷
.e vertices have dissimilar representation as regards ℜ which give

dim(H4,ð▷
.e) ≤ 3when ð▷ ≡ 1 ( mod 4).

Case 3: If we take ð▷ ≡ 3 ( mod 4) i.e., ð▷ = 4u▷ + 3, u▷(≥ 3) ∈ Z+, then,

r(v2ג▷ |ℜ) =
{

,▷ג) ▷ג − 1, ▷ג − 1); 2 ≤ ▷ג ≤ u▷ + 1,
(2u▷ − ▷ג + 2, 2u▷ − ▷ג + 2, 2u▷ − ▷ג + 3); u▷ + 2 ≤ ▷ג ≤ 2u▷ + 1,

and also,

r(v21+▷ג|ℜ) =

 ▷ג) + 1, ,▷ג ▷ג − 1); 2 ≤ ▷ג ≤ u▷,
▷ג) − 1, ,▷ג ▷ג − 1); ▷ג = u▷ + 1,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 2, 2u▷ − ▷ג + 3); u▷ + 2 ≤ ▷ג ≤ 2u▷.

Once more all H4,ð▷
.e vertices have dissimilar representation as regards ℜ which give

dim(H4,ð▷ .e) ≤ 3when ð▷ ≡ 3 ( mod 4).
Case 4: If we take ð▷ ≡ 2 ( mod 4) i.e., ð▷ = 4u▷ + 2, u▷(≥ 3) ∈ Z+, then,

r(v2ג▷ |ℜ) =

 ,▷ג) ▷ג − 1, ▷ג − 1); 2 ≤ ▷ג ≤ u▷,
▷ג) − 1, ▷ג − 1, ▷ג − 1); ▷ג = u▷ + 1,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 2, 2u▷ − ▷ג + 3); u▷ + 2 ≤ ▷ג ≤ 2u▷,

and also,

r(v21+▷ג|ℜ) =

 ▷ג) + 1, ,▷ג ▷ג − 1); 2 ≤ ▷ג ≤ u▷,
(u▷, u▷, u▷); ▷ג = u▷ + 1,
(2u▷ − ▷ג + 1, 2u▷ − ▷ג + 1, 2u▷ − ▷ג + 2); u▷ + 2 ≤ ▷ג ≤ 2u▷.

For ð▷ ≡ 2( mod 4), we observe that v2u▷+2 and v2u▷+3 have similar representation. To
obtaineddissimilar representation, we include v2u▷+2 toℜ. That isℜ1 = {v1, v2, v3, v2u▷+2}
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distinguish V (H4,ð▷
.e). Hence dim(H4,ð▷

.e) = 4 for ð▷ ≡ 2 ( mod 4). Conversely we
express, dim(H4,ð▷

.e) ≤ 3 for ð▷ ≡ 0, 1, 3 ( mod 4). Assume in contrary that this is not
true. We suppose that dim(H4,ð▷

.e) = 2 for ð▷ = 4u▷ + p, where p can be 0, 1 and 3.

Suppose v1 is one vertex and the second vertex is vi, then,
(i) If ▷ג = 2, then r(v3|{v1, vג▷}) = r(v4|{v1, vג▷}).
(ii) For ð▷ ≡ 0 ( mod 4),

(a) If 3 ≤ ▷ג ≤ 2℘▷ − 1, then r(v5+▷ג|{v1, vג▷}) = r(v6+▷ג|{v1, vג▷}).
(b) If ▷ג = 4, then r(v1+▷ג|{v1, vג▷}) = r(v2+▷ג|{v1, vג▷}).

(iii) For ð▷ ≡ 1 ( mod 4),
(a) If ▷ג = 4, then r(v3+▷ג|{v1, vג▷}) = r(v4+▷ג|{v1, vג▷}).
(b) If ▷ג = 6, then r(v1+▷ג|{v1, vג▷}) = r(v2+▷ג|{v1, vג▷}).

(iv) For ð▷ ≡ 3 ( mod 4),
(a) If ▷ג = 4, then r(v1+▷ג|{v1, vג▷}) = r(v2+▷ג|{v1, vג▷}),

r(v3+▷ג|{v1, vג▷}) = r(v4+▷ג|{v1, vג▷}), r(v5+▷ג|{v1, vג▷}) = r(v6+▷ג|{v1, vג▷}).
(b) If ▷ג = 6, then r(v1+▷ג|{v1, vג▷}) = r(v2+▷ג|{v1, vג▷}),

r(v3+▷ג|{v1, vג▷}) = r(v4+▷ג|{v1, vג▷}), a contradiction again. This gives that
dim(H4,ð▷ .e) = 3 for ð▷ ≡ 0, 1, 3 ( mod 4)whereas dim(H4,ð▷ .e) = 4 for
ð▷ ≡ 2 ( mod 4). We observe that like above discussed regular graphs
H4,ð▷

.e vertices are resolved by only three and four vertices for
ð▷ ≡ 0, 1, 3( mod 4) and ð▷ ≡ 2( mod 4) respectively, which represent that
H4,ð▷ .e for ð▷ ≡ 0, 1, 3 ( mod 4) is a collection of graphs having constant
MD. Since dim(H4,ð▷) = 3 for ð▷ ≡ 0, 2, 3 ( mod 4)whereas dim(H4,ð▷) = 4
for ð▷ ≡ 1 ( mod 4). That is why outer edge contracted MD of H4,ð▷

.e is,

β(H4,ð▷
.e) =

 β(H4,ð▷), if ð▷ ≡ 0, 3( mod 4),
3, if ð▷ ≡ 1( mod 4),
4, otherwise.

In Figure 5, (a) Harary graphH4,ð▷
and (b) Edge contracted Harary graphH4,ð▷

.e are discussed.

v2
v3

v4

v5

v1

vm

vm-1

v2
v3

v4

v5

v1

vm-1

vm-2

e

(a)

(b)

Figure 5: (a) Harary graphH4,ð▷ . (b) Edge contracted Harary graphH4,ð▷ .e.
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Theorem 4.2. Let H4,ð▷
be a 4-regular Harary graph with ð▷ ⩾ 5; then the inner edge contracted MD of

H4,ð▷
.e is,

β(H4,ð▷
.e) =

 β(H4,ð▷
), if ð▷ ≡ 0, 3 ( mod 4),

3, if ð▷ ≡ 1 ( mod 4),
4, otherwise.

5 Conclusion

An analysis of the MD in edge contracted regular graphs reveals an intriguing aspect of graph
theory. Scholars have learned vital information about the dimensionality and structural properties
of graphs by studying the behavior of MD under ECs. In this article, the MD for certain families
of graphs have been investigated.

• dim(Að▷
.e) = dim(Að▷

) for ð▷ ⩾ 3.
• dim(P(ð▷, 2).e) = dim(P(ð▷, 2)) for ð▷ ≥ 5.
•

β(H4,ð▷
.e) =

 β(H4,ð▷), if ð▷ ≡ 0, 3( mod 4),
3, if ð▷ ≡ 1( mod 4),
4, otherwise.

5.1 Limitations of the study

By focusing on certain families such as antiprism, Petersen, andHarary graphs, the conclusions
become more generalizable and important. Although these families shed light on symmetrical
and regular structures, other graph types, such as irregular or sparse graphs, may display distinct
behaviors under EC, which this work more addresses.

5.2 Future work

Exploring other graph families and structures: future research could broaden the scope to in-
clude a broader range of graph families, such as trees, bipartite graphs, and scale-free networks, to
determine whether the patterns observed with EC and MD are universal or if different structures
exhibit distinct behaviors.

Additional invariants: to offer a more complete picture, future research might look at how
other invariants (such as diameter, connectedness, and chromatic number) change during EC.
This would not only improve our knowledge of EC effects, but it can also reveal interdependencies
between MD and the other invariants.

Developing scalable algorithms: as bigger and more complicated networks are explored, in-
venting algorithms that efficiently compute MDs under EC will become critical. Future research
might focus on developing scalable techniques or approximation algorithms to handle large net-
works more effectively.
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Application-oriented studies: applying discoveries to real-world networks, such as biological,
social, or transportation networks, would put theoretical ideas to the test in practice. Researchers
could, for example, investigate how contracted graph models with specified MDs aid in the opti-
mization of routing, navigation, and resource placement.

Interplay between metric dimension and graph topology: future study might look into how
topology-specific properties (such as clustering, assortativity, or degree distribution) interact with
MD during EC, perhaps leading to a more general theory that connects graph topology with
distance-based metrics.

Future research that addresses these restrictions and expands in these areas can contribute to
a thorough knowledge of MD and other invariants in contracted graph models, making this field
of study useful for both theoretical breakthroughs and practical applications.
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